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Abstract: :  It is shown that Pauli Matrixes can be derived from irreducible 
rotation group representations of the weight           , which in turn based on the 
system of infinitesimal (elementary) spatial rotations. The last permits to 
substantiate why Pauli matrixes can be so sufficiently used for modeling of physical 
rotations.
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Introduction

In (Milnikov A.A., Prangishvili A.I., Rodonaia I.D.(2005)-
Milnikov A., Onal H., Partskhaladze R., Rodonaia I., (2004)) we get new 
algorithm based on spinor representation of 3-dimensional rotation group. 
Pauli matrixes were used essentially but there was not mentioned deep 
connection between physical rotations and the matrixes. The presented 
work is devoted to illumination of such connection.

Rotations of a three-dimensional space can be described by 
complex matrices of second order. In that case, we use the stereographic 
projection of the sphere onto the plane. Each rotation of a three-
dimensional space transforms a point of the sphere to another point of the 
sphere. This process corresponds to the transformation of points in the 
plane. The relation between the coordinates of the sphere and those of plane 
points is given by the formulas

(1)

Where x, y, z are the coordinates of a point on the sphere, while ξ  
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and η are the coordinates of the stereographic projection of this point onto 
the plane. If we introduce the complex variable ζ = ξ + iη, then it turns out 
that to each rotation there corresponds a linear-fractional transformation of 
the form

(2)

Where α, β, χ, δ are complex constants. To the linear-fractional 
transformation (2) we can uniquely assign the transformation matrix of 
second order

(3)

acting in the complex plane. By virtue of the linear-fractional 
property of transformation (2) we can find that determinant (3) is equal to 
±1: for this it is sufficient to multiply both the numerator and the 
denominator of (2) by

(clearly, ς΄remains unchanged). The latter means that to each 
rotation there corresponds the transformation of the complex plane by 
means of matrix (3) defined to within a sign. If determinant (3) is equal to 1,  
then we have a proper rotation and matrix (3) is unitary and unimodular. In 
that case, the converse statement is also true: to any unimodular matrix of 
form (3) there corresponds a rotation.  By the unitary property of matrix (3) 
we obtain       .

If we add here the condition of unimodularity αδ - γβ =1, then we 
easily have        , i.e. for rotations matrix  (3) takes the form

(4)

It is possible to obtain Pauli matrixes in the shape of (4).

 Elementary Rotations and Group representations

A finite-dimensional representation of the group of rotations G is 
said to be given if to each element g of the group there corresponds a linear 

n
transformation T  in some linear space L . It should be emphasized that we g
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consider the group of rotations in the three-dimensional space though the 
n

corresponding linear transformations T  act in L  T too. In order that this g

correspondence be a representation, the following conditions must be 
fulfilled: 

and  (5)

In finite-dimensional spaces, linear transformations are given by 
means of matrices and therefore finite-dimensional representations are, as a 
matter of fact, representations of the group of rotations by means of 
matrices. The representation is called basic when to each solution there 

3
corresponds its matrix in L . Another example of the representation can be 

2
given as follows: take two arbitrary vectors x and y and form n  products of 
their coordinates (this is done in the general case, while for n = 3 we 

2
obviously have 3  = 9). It can be shown that in the process of rotation the 

i jproducts x y  undergo transformation (it is defined by the rotation 
transformation of the vectors x and y) which satisfies conditions (5). 

2Therefore this representation is defined by 3  parameters as different, say, 
from the basic transformation which is defined by three Euler angles. 

Linear transformations of representations (matrices) may have 
invariant subspaces. A subspace is called invariant with respect to a given 

1
representation if is invariant with respect to all transformations of given T . g

A representation is called irreducible if it has no invariant subspaces. The 
study of representations of rotation groups comes to the study of irreducible 
representations. 

As has been mentioned above, rotations can be given by various 
systems of parameters. In the role of such parameters let us take three 
numbers ξ , , which are the coordinates of the vector directed along the 1 2 3 

rotation axis, the length of which is equal to the rotation angle. The matrix 
T  is the function of these parameters T  = T (ξ ,ξ ,ξ ) and, for ξ ξ ξ  = 0, g g g 1 2 3 1 2 3

we have  T (0, 0, 0) = E. The function T  = T (ξ ,ξ ,ξ ) can be decomposed in g g g 1 2 3

a neighborhood of the point  ξ =ξ =ξ  = 0 as follows:1 2 3

T (ξ ,ξ ,ξ ) = E + A ξ + A ξ  +A ξ  + O(ξ ,ξ ,ξ ), (6)g 1 2 3 1 1 2 2 3 3 1 2 3

where are constant 
matrices;

ξ ξ

= =

21121 gggg TTT = ETe =

1 It is important to emphasize that the subspace must be simultaneously invariant with respect to all T  of the g

considered representation, since it is obvious that for each T  there always exists its invariant subspace defining g

the rotation axis: this is a one-dimensional subspace in the case n = 3  or a subspace of dimension greater than 1 (2. 
section but   ?n - 2) in the case n > 3.
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O(A1.ξ ,ξ ,ξ ) are infinitesimal values of higher orders as compared 1 2 3

with

The matrices A  have a simple physical meaning: they define i

infinitesimal rotations about the coordinate axis. 

Let us  now  show that the considered representation  is completely 
defined by these matrices. For this, we consider two rotations g(tξ , tξ , tξ ) 1 2  3

and g(sξ ,sξ ,sξ ) about the vector (ξ ,ξ ,ξ ). From the definition of this 1 2 3 1 2 3

vector it follows that the first rotation is the rotation by the angle

 while the second rotation – by the angle    .The product g(tξ , 1

tξ , tξ )·g(sξ ,sξ ,sξ )= g((t + s)ξ , (t + s)ξ , (t + s)ξ ) is obviously the rotation 2  3 1 2 3 1 2 3

by the angle

Using the first property of the representation we can also write an 
analogous equality for matrices that  realize this representation

T((t + s)ξ , (t + s)ξ , (t + s)ξ ) = T(tξ , tξ , tξ )  T(sξ , sξ , sξ ). (7)1 2 3 1 2 3 1 2 3

Differentiating both sides of (7) with respect to s and then putting    
s = 0, we have

(8)

From (6) it follows that

(9)

By substituting (9) into (8) we obtain a system of linear differential 
equations that allows us to define the elements of the representation matrix

(10)

Where  X(t) = T(tξ , tξ , tξ ).1 2 3

2
The initial conditions are X(0) = T(0, 0, 0) = E.
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dt

d
s ++==

)()()( 332211 tXAAAtX
dt

d ⋅++= ξξξ

2 Here we must prove the differentiability of representation matrices with respect to the parameters ξ ,ξ ,ξ  see  1 2 3

(Gelfand I.N.(1966)).
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The solution of  (10) is obviously

(11)

From (11) follows 

(12)

(12) just shows that the considered representation T(tξ , tξ , tξ ) is 1 2 3

defined by the matrices  A , A , A . 1 2 3

Between the matrices A , A , A  there exist the commutation 1 2 3

relations

[A , A ] = A , [A , A ] = A  and [A , A ] = A (13)1 2 3 2 3 1 1 3 2

where [A, В] = АВ – ВА  is the commutator of the matrices А and В.

If the representation Т is unitary, then matrices A  are skew-i

Hermitian:            . This follows from the assumption that the 
representation T is unitarian and from decomposition (6). If we introduce 
the matrices  H  = iA  (i = 1, 2, 3)(    ),  then it is obvious that they are i i

Hermitian and the commutation relations take the form

[Н , Н ] = iН , [Н , Н ] = iН  and [Н ,Н ] = iН . (14)1 2 3 2 3 1 1  3 2

Now the problem of defining all possible representations of rotation 
groups can be reduced to defining such triples of Hermitian matrices Н  that, i

firstly, satisfy relations (14) and, secondly, actually give irreducible 
representations of rotations. Thus we define the matrices of infinitesimal 
rotations A  too, which, as a matter of fact, is the final purpose of our i

investigation. A detailed proof of this problem is given in [1]. We only want 
to make the following remark. Let us introduce the new matrices 

H  =Н  + iН ,H  = Н - iН ,Н = Н . It turns out that if f is the + 1 2 - 1 2 3 3

eigenvector of the matrix Н  corresponding to some eigenvalue of λ  (Since 3

Н  is Hermitian, all λ 's are real numbers), then the vector f  = H f either is 3 1 + 

equal to zero or is the eigenvector of the matrix Н  corresponding to the 3

eigenvalue  λ+ 1. Analogously, the vector f  = H f  either is equal to zero or 2 -  

is the eigenvector of the matrix Н  corresponding to the eigenvalue  λ-1. 3

This property of eigenvectors f  of the matrix Н allows us to prove that their i 3 

number is equal to 2l + 1, where l is a half-integer number, i.e. it can be equal 
either to an integer number or to a half-integer number. Next it is proved 
that, in the orthonormalized basis constructed of these vectors, the matrices 

)( 332211)( ξξξ AAAtetX ++=
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321
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we want to define have the following form: 

(15)

where m = -l, -l + 1, … ,l and f   are the orthonormalized m

eigenvectors of the matrix H . 3

The number l  is called the weight of the considered irreducible 
representation. 

From (15) it follows that any irreducible representation is defined 
by its weight uniquely: elementary rotation matrices A   are defined from  i

(15), while the rotation matrix Т is defined from (12). It can be said that (15) 
gives a complete solution of the problem on defining all irreducible 
representations of the group of rotations.

Representations of the weight 

Let us find the matrices А  corresponding to the representation with i

weight .  If          then .

We first define А .1

For and  , from (15) we have 

(16)

Analogously, for    and we have

(17)

Thus the matrix А  takes the form1
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(18)

It is likewise easy to obtain the expression for the matrices А  and А :2 3

 ,      . (19)

Multiplying the matrices А  and А  by 2i, and the matrix А   by  –i, 1 2 3

we obtain the matrices

(20)

Matrices (20) are the so-called Pauli matrices which underlie the 
spinor theory and which are usually introduced formally without indicating 
the source of their origination. The latter circumstance makes it difficult to 
understand their geometrical meaning. However from the above reasoning 
it follows that these matrices are generated by matrices of infinitesimal 
rotations about the coordinate axes. 

Let us at once indicate their properties 

      and (21)

(22)

(22) shows that the matrices       are anticommutative. 
Both properties are easily verified in a straightforward manner. 

Multiplying the matrices σ   by –i, we obtain the new matrices h ,i i

(23)

Which possess other properties that are also easy to verify:

    ;

(24)
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The matrices 
determinants are equal to –1 for σ and  +1  for h ,which, in view of their i i

2
property to be traceless, determines their characteristic polynomials λ -1=0 

2and λ +1=0, respectively. Thus, proceeding from the theory of rotation 
group representation, we can construct (using the matrices σ  ,h (i=1,2,3) i i

and the unit matrix   )

the spinor theory and the Clifford algebra. (note that of late it has  often been 
referred to as geometric algebra).

Reference

1. Gelfand I.N. Lectures in Linear Algebra M., (1966), p. 271. Nauka, Moscow

2. Milnikov A., Onal H., Partskhaladze R., Rodonaia I., (2004) Spinor evaluation 
of Euler's angles: Jornal of applied mechanics, No2, p.p. 48-53.  Tbilisi 

3. Milnikov A.A., Prangishvili A.I., Rodonaia I.D.(2005) Spinor Model of 
Generalized Three-dimensional Rotations: Automation and remote Control, Vol.66, No 6, 
p.p. 876-872.  Moscow

σ  ,h (i=1,2,3) are unitary traceless matrices. Their i i

10

01
0 =σ

186

IBSU Scientific Journal     2 (1), 2008




