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Modeling of Deceleration Process of Spatial Movements

Cabir ERGUVEN

Abstract: Solution of breaking problem of moving mechanical object is
discussed. Five boundary values are used for the problem. Mathematical model of
the process has been obtained. Also all dynamic functions and characteristics are
represented. They shoe the accuracy of terminal positioning of deceleration.
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Introduction

The spinor model of the kinematics of spatial rotations developed
on the basis of spinor representation of generalized spatial rotations
[Erguven (2007), Milnikov A.A., PrangishviliA.l., Rodonaia 2005] and the
methods of the control theory of terminal states of motion of mechanical
objects [Erguven (2007), Batenko A.P. (1977)] made it possible to create
simple methods of controlling terminal states of spatial rotations of robot-
manipulators. The result has enabled us to reduce the three-dimensional
problem of spatial motion control to the one-dimensional problem.

Basics of Model

Let us consider the following technologic task. It is required to
bring by means of rotation a mechanical object of control (for instance, a
gripping device or a spherical link) with coordinates x (x', X*, x°) to the point
of a three-dimensional space with coordinatesy (y', y*, y°). An intermediate
rotating vector & (§ ;€ *;€%) performs rotation by an angle defined by the
terminal and initial points of rotation -

(x;y) )=ar cos((x’ Z))
[y i

Y, =arcos(
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We have obtained the kinematics expressions for the rotating vectors.
[Erguven (2007)]

£1(t) = %(cos(vf Y (O)r; ~cosy O)r})
£ (1) :%(cos(vf -y (O)r7 ~cosy (Or;)
£°(t) :%(cos(vf Y (O)r ~cosy ()r;) O

where 1= (X"y’ =7y 0y =Xty Yt =xy)
ro=(2 =’ =3 rx? -rixt)
= (rfy’ —rys ey —ry%ry* -riy’) .
We have used the rotation angle function Y(t) satisfying the
following quite obvious condition:

(x.y),

0<y(t)<y, =arcos( | |
X

Letusdividetheinterval [0;Y]into three segments:[0;a.,y ]

[oy oy 1oLy syl wherea, a, <1ua,=a, Itisclear that the first
segment corresponds to the beginning of the motion process, the second
segment to uniform motion and, finally, the third subinterval to
deceleration. If we give a, = a,, then there will be no uniform motion (the
length of the second segment is equal to zero), i.e. the initial stage of motion
is immediately followed by the deceleration stage. Later we are discussing
only the deceleration stage.

For the deceleration process ending in a complete stop we need to
use the problem with five conditions since it is clear that at the end of the
rotation process the acceleration must be equal to zero. Therefore the
boundary conditions take the following form: [Erguven Cabir, (2006)]

t=0;y =0.904; y =1, t=T;y=1355y=0;y=0. (2)
Substituting
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K4
YO=€ ? (o —ap)oost +Go -, ¥2 a“))anﬁt)ieu'

into (1) we obtain the following expressions for the rotating vector
coordinates as functions of time:

£ = ||X|| (cos(y, —e & (Yo —ap) cos Bt +

Kyt

(7 —aK, Yo~ a°))SInBt)+Z&t r—cos(e ? ((y ~a)cosPt+

(7 -aik,, Yo~ Bhyin Bt)+;at‘)fyl);

L

Ez(t)=%(008(vf e 2 (v —3)cospt+

Kyt

+(7p -k, Yo~ a"))smst)qat)r —cos(e ? (Y —2,)C0sPt +

(7 =K, Ve~ Bysingy) + ;ati)rf);

X’ Kot
Es(t) :%(COS(W =€ 2 ((yy —a)cosft +
Kt

+ (i —aK, o a°’>sth)+ at)r*—cos(e ? ((y,o —a,) cospt+

+ (2K, (Vm—z‘af’))sin Bty + ;at‘)rf), 3)

where K, a,(1=0,1, 2,3, 4) and 3 are defined in [Erguven Cabir,
(2006)]. It is not difficult either to calculate the derivatives for (3), but we
omitthese calculations here because they are too long and tedious.

Thevaluesof Y, and Y, are equal to the initial deviations from the
synthesized control trajectories and define the presence of a transient
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process. When they are equal to the boundary conditions (2) for t = 0, this
means that there is no transient process at all. [Erguven Cabir, (2006)]

3. Results of Realization of the Model Deceleration Process

Figures 1?4 show the dynamic characteristics of the control
process on the deceleration segmentwheny,, =y, =0.905 and y,, =y, =1
i.e. when there is no transient process —this is clearly seen from Figures. 1.b
and 2.b Therefore the curves in Figure. 1.a and Figure. 2.a coincide, since
the transient component is absent. Again we see that the control fully
satisfies the boundary conditions and in this case the acceleration and the
velocity become equal to zero at the end of the given time interval (Figure.
2.cand Figure. 4) , which results inacomplete stop.

Figure 1: The deceleration segment (there is no transient process):
the rotation angle value asafunction of time:

a) the forced component

b) the transient component
¢) the complete solution: the sum of the forced and transient components
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Figure 2: The deceleration segment (there is no transient process):
the rotation angle value as a function of time:
a) the forced component
b) the transient component
¢) the complete solution: the sum of the forced and transient components
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Figure 3: I ne aeceleration segment (TNere IS NO transient process): the pnase trajectory
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Figure4: Thedeceleration segment (there is no transient process):
Acceleration asa function time
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Figure 5: The deceleration segment (there is atransient process):
Therotation angle value asa function of time:
a) the forced component
b) the transient component
c) the complete solution: the sum of the forced and transient components
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Figure 6: The deceleration segment (there is atransient process):
The angular velocity as a function of time
a) the forced component
b) the transient component;
¢) the sum of the forced and transient components
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Figure 7: The deceleration segment (there is atransient process): The phase trajectory:
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Figure 8: The deceleration segment (there is atransient process):
Acceleration asa function of time
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Figures 5?8 show the dynamic characteristics when

Y0 =Y, =0 and y,, =y, =0. In this case, as seen from Figures. 5.b and 6.b there
exists a transient process. As different from the preceding motion stages, in this case the
intensity of transient processes is quite comparable with stationary functions though these
transient processes damp down soon. It is obvious that the intensity of transient processes
explains an essential difference between the stationary and complete functions of angular
motion (Figure. 5.aand 5.b) and its velocity (Figure. 6.a and 6.b). Nevertheless the control
again satisfies the boundary conditions which gives for the deceleration stage the values

y(T,) =y, =1.355 and |X|=|E(O)|:|E(T1)|:55-
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