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Abstract: Solution of breaking problem of moving mechanical object is 
discussed. Five boundary values are used for the problem. Mathematical model of 
the process has been obtained. Also all dynamic functions and characteristics are 
represented. They shoe the accuracy of terminal positioning of deceleration.
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Introduction

The spinor model of the kinematics of spatial rotations developed 
on the basis of spinor representation of generalized spatial rotations 
[Erguven (2007), Milnikov A.A., Prangishvili A.I., Rodonaia 2005] and the 
methods of the control theory of terminal states of motion of mechanical 
objects [Erguven (2007), Batenko A.P. (1977)] made it possible to create 
simple methods of controlling terminal states of spatial rotations of robot-
manipulators. The result has enabled us to reduce the three-dimensional 
problem of spatial motion control to the one-dimensional problem.

Basics of Model

Let us consider the following technologic task. It is required to 
bring by means of rotation a mechanical object of control (for instance, a 

1 2 3
gripping device or a spherical link) with coordinates x (x , x , x ) to the point 

1 2 3of a three-dimensional space with coordinates y (y , y , y ). An intermediate 
rotating vector                      performs rotation by an angle defined by the 
terminal and initial points of rotation - 
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We have obtained the kinematics expressions for the rotating vectors. 
[Erguven (2007)]

(1)

where        ,

       ;

       .

We have used the rotation angle function s a t i s f y i n g  t h e  
following quite obvious condition:

        .

Let us divide the interval     into three segments:               

                          , where a , a  < 1 u a  = a . It is clear that the first 2 1 2 1

segment corresponds  to the beginning of the motion process, the second 
segment to uniform motion and, finally, the third subinterval to 
deceleration. If we give a  = a , then there will be  no uniform motion (the 2 1 

length of the second segment is equal to zero), i.e. the initial stage of motion 
is immediately followed by the deceleration stage. Later we are discussing 
only the deceleration stage.

For the deceleration process ending in a complete stop we need to 
use the problem with five conditions since it is clear that at the end of the 
rotation process the acceleration must be equal to zero. Therefore the 
boundary conditions take the following form:  [Erguven Cabir, (2006)]

t=0;                 ;          ,      t=T;     ;    ; . (2)
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into (1) we obtain the following expressions for the rotating vector 
coordinates as functions of time:

(3)

where  K , a  (i = 0, 1, 2, 3, 4) and β are defined in [Erguven Cabir, ω i

(2006)]. It is not difficult either to calculate the derivatives for (3), but we 
omit these calculations here because they are too long and tedious.

The values of                    are equal to the initial deviations from the 
synthesized control trajectories and define the presence of a transient 

 

∑
=

−
+−−+−=

4

0

010
110010

2 )sin)
2

)(
(cos)(()(

i

i
i

tK

tat
a

Kataet βγγβγγ ω

ω

&

);))sin)
2

)(
(

cos)((cos())sin)
2

)(
(

cos)(((cos()(

1
4

0

010
110

010
21

4

0

010
110

010
2

2

1

y
i

i
i

tK

x
i

i
i

tK

f

rtat
a

Ka

taertat
a

Ka

tae
r

x
t

∑

∑

=

−

=

−
2

+−−+

+−−+−−+

+−−=

βγγ

βγβγγ

βγγξ

ω

ω

ω

ω

&

&

);))sin)
2

)(
(

cos)((cos())sin)
2

)(
(

cos)(((cos()(

2
4

0

010
110

010
22

4

0

010
110

010
2

2

2

y
i

i
i

tK

x
i

i
i

tK

f

rtat
a

Ka

taertat
a

Ka

tae
r

x
t

∑

∑

=

−

=

−
2

+−−+

+−−+−−+

+−−=

βγγ

βγβγγ

βγγξ

ω

ω

ω

ω

&

&

),))sin)
2

)(
(

cos)((cos())sin)
2

)(
(

cos)(((cos()(

3
4

0

010
110

010
23

4

0

010
110

010
2

2

3

y
i

i
i

tK

x
i

i
i

tK

f

rtat
a

Ka

taertat
a

Ka

tae
r

x
t

∑

∑

=

−

=

−
2

+−−+

+−−+−−+

+−−=

βγγ

βγβγγ

βγγξ

ω

ω

ω

ω

&

&

00 γγ &and

147

IBSU Scientific Journal     2 (1), 2008



process. When they are equal to the boundary conditions (2) for t = 0, this 
means that there is no transient process at all. [Erguven Cabir, (2006)]

3. Results of Realization of the Model Deceleration Process

Figures 1?4 show the dynamic characteristics of the control 
process on the deceleration segment when
i.e. when there is no transient process – this is clearly seen from Figures. 1.b 
and 2.b Therefore the curves in Figure. 1.a and Figure. 2.a coincide, since 
the transient component is absent. Again we see that the control fully 
satisfies the boundary conditions and in this case the acceleration and the 
velocity become equal to zero at the end of the given time interval (Figure. 
2.c and Figure. 4) , which results in a complete stop.

Figure 1: The deceleration segment (there is no transient process): 
              the rotation  angle value as a function of time: 
   a) the forced component       
   b) the transient  component
   c) the complete solution: the sum of  the forced and transient components
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Figure 2: The deceleration segment (there is no transient process): 
              the rotation angle value as a function of time: 
  а) the forced component

 b) the transient component
 c) the complete solution: the sum of the forced and transient components

Figure 3: The deceleration segment (there is no transient process): the phase trajectory 
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Figure 4:  The deceleration segment (there is no transient process):  
                 Acceleration as a function time 

Figure 5: The deceleration segment (there is a transient process): 
       The rotation angle value as a function of time: 

a) the forced component
b) the transient  component
c) the complete solution: the sum of the forced and transient components
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Figure 6: The deceleration segment (there is a transient process): 
The angular velocity as a function of time 
a) the forced component 
b) the transient component;   
c) the sum of the forced and transient components

Figure 7: The deceleration segment (there is a transient process):   The phase trajectory:
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Figure 8: The deceleration segment (there is a transient process):
Acceleration as a function of time

Figures  5?8 show the dynamic characteristics when 

In this case, as seen from Figures. 5.b and 6.b there 
exists a transient process. As different from the preceding motion stages, in this case the 
intensity of transient processes is quite comparable with stationary functions though these 
transient processes damp down soon. It is obvious that the intensity of transient processes 
explains an essential difference between the stationary and complete functions of angular 
motion (Figure. 5.a and 5.b) and its velocity (Figure. 6.a and 6.b). Nevertheless the control 
again satisfies the boundary conditions which gives for the deceleration stage the values

                           and            .
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