
Analysis and Synthesis of Terminal Control Reduction 
Problem

Cabir ERGÜVEN

Abstract: One of the most important problems of terminal control reduction 
problem is considered and solved. On the base of spinor representation of spatial 
rotation group, the control law functions are obtained. A mathematical model of 
reduction process is constructed. The results can be used for practical purposes to 
elaborate simple control algorithms of spatial movement reduction process in 
many different fields.
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 Introduction

In the article [Erguven C. et al 2004 ], it has been shown that many 
motion control problems can be reduced to problems of control of terminal 
states of controlled objects. The main purpose of this investigation is to 
work out a simple adaptive method of terminal state control. One of the 
most important problems of terminal control is the problem of reduction of 
a moving object to the necessary state [Letov А.М.(1969)], which has wide 
practical applications. 

Synthesis of the ControlThe reduction problem is defined by the 
following boundary conditions: 

 t = 0;               ;               ,    (1)

 t = T;               ; (2)

Conditions (1) and (2) mean that the object should be transferred 
from the initial state              and              to the state             and at that its 
motion velocity should be arbitrary. In terms of variational calculus, this is a 
problem with moving ends. For this kind of problems, the given boundary 
conditions (1) and (2) are supplemented by the so-called natural boundary 
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condition which in our case looks like [Kolmogorov A.N., Phomin C. 
(1972) Young L. (1974) ].

                          , (3)

where               .

Clearly,              and                . (4)

Condition (3) is reduced to the form

 (5)

Differentiating 

(6)

thrice, taking into account the boundary conditions (1), (2) and the 
natural condition (5), we can define 

C  (i = 0, 1, 2, 3) as follows: i

  . (7)

Substituting (7) into the first and the second derivative of (6), we 
obtain the following expressions for an optimal trajectory in the phase 
space:

, (8)

. (9)

The acceleration (the second derivative in (8)) takes the form

. (10)

This is the law of control for the reduction problem. It means that if 
the acceleration of the controlled object on the time interval [0;T] is 
assumed to be constant and equal to (10), then at the moment of time t = T  
its state will satisfy the boundary conditions t = T;             ;            . 
However this is an open (program) law of control, i.e. the control law 
without feedback. Due to the possibility of direct measurements of the 
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acceleration of a controlled object, (9) can be transformed to the control law 
with feedback. For this it suffices to assume the initial phase state to be the 
current one, i.e. to assume                           . In that case, the task fulfillment 
time should be assumed to be equal to the remaining time T—t. Then (10) 
takes the form 

(11)

From (11), we see that in this case the acceleration acting on the 
controlled object stops to be constant and becomes dependent on the current 
velocity and coordinate values of the controlled object, i.e. , we have the 
realization of control with feedback. The block-diagram of the realization 
of control with feedback is presented in Figure 1. The measured coordinates 
of the current state (         ) are delivered to the automatic control unit 
(ACU), where the required value of the influencing acceleration (11) is 
computed. 

Figure 1: The block-diagram of the ACU of the reduction problem. 

Analysis of the Control Process Dynamics in the Reduction Problem 

It is clear that the motion program (8) (open control) is accelerated 
motion with constant acceleration (10). As has already been said, the 
transition to the control with feedback (11) transforms it to motion with 
variable acceleration. However, in that case, for t = T there arises one 
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singularity – the denominator of the controlling function becomes equal to 
zero. This difficulty can be overcome by doing the following. 

Assume that T – t = ÄT, where T is a constant time interval. From 

the physical standpoint this means that the target point of the reduction 
process is also moving, since it leaves the controlled object behind by the 
value ÄT. Denote its variable coordinate by The controlling 

acceleration function on the time interval ÄT takes the form

(12)

where               (the coordinate and velocity of the controlled 
object) are, as previously,  the variable values which are functions of time. 

Thus when using the left-hand side of expression (12) for the 
controlling acceleration, it is  assumed that the object moves with a constant 
lag in time by the value ÄT  from the target point        and and, after time Т, 

its coordinate becomes equal to the given value              . 

Now let us verify that this is really so. We begin by noting that by 
analogy with (8) we have the following program for the control of the 
coordinate of the moving target point 

           , (13)

This equation reflects the fact that the leading point      leaves the 
controlled object behind by time ÄT.

Substituting (13) into (12) and performing some simple 
transformations, we obtain the following expression for the controlling 
acceleration

, (14)

where            is the velocity of the controlled object
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     ;       ;        

Expression (14) is a linear non-homogeneous differential equation 
of second order with constant coefficients 

   , (15)

where . 

As is known, its solution consists of two parts: a general solution of 
the corresponding homogeneous equation and a particular solution of the 
non-homogeneous equation. The first of these solutions is the so-called 
transitional component and the second solution is a stationary component 
[Kolmogorov A.N., Phomin C. (1972) Andronov A.A., (1981) ].

Let us first define a particular solution, i.e. a stationary component. 
It will be sought in the form of a polynomial of the same structure as the 
right-hand part 

(16)

Substituting (17) into (16) and equating the right-hand parts, where 
powers t are assumed to be equal, we get the following equations for the 
coefficients a (i=0, 1, 2):i 

   ;          ;   . (17)

(17) can be solved as follows: 

   ;       ;

    . (18)

Substituting the coefficients k  (i = 0, 1, 2) from (14) into i

expressions (18), we finally obtain 

          ;   ;      . (19)

Hence a particular solution of the non-homogeneous equation (15) 
has the form
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        , (20)

which coincides with (8) and thus indeed satisfies the boundary 
conditions (1) and (2). 

Now let define a solution of the homogeneous equation

     , (21)

i.e. a transitional function of the reduction process.

The characteristic equation (21) can be written in the form

, (22)

which, as is easily seen, has two complex-conjugate roots

       and        , (23)

where  .

By virtue of (23), a general solution of the homogeneous equation 
(21) can be written in the form

, (24)

which leads to a general solution of the non-homogeneous equation 
(15) [Andronov A.A., (1981) ]

.  (25)

We also need a derivative   (25)

(26)

The initial values of functions (25) and (26) defined according to the 
initial conditions
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t = 0;              ;             , (27)

allow us to define the constants С  and С1 2

             and (28)

and thereby the final form of a solution of the differential equation 
(15)

(29)

Here we should make a remark concerning the initial conditions 
(27), since they differ from the first of the boundary conditions (1). The 
matter is that the reduction process can be started for any initial values of the 
coordinate and velocity of the controlled object. It is not obligatory that 
these values be equal to the calculated values of the coordinate and velocity 
of the controlled object which are given preliminarily in (1). If values (1) 
and (17) are not equal, then there occurs a transitional process defined by 
the exponential summand in (29). Otherwise, the transitional component is 
absent and the reduction process has to be content with the forced 
component, i.e. with the second summand in (29).  It should also be noted 
that the transitional component has a damping character and the value ÄT 

plays the role of a time constant: the larger it is, the slower the damping 
process is, and vice versa. Thus the value ÄT can so-to-say serve as a 

measure of «strictness» of reduction process control.
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