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Variation Approach in Adaptive Control of Mobile Robots

Cabir ERGUVEN!

Abstract

In this article, various problems of movement control of mechanical objects
like problem of guidance, problem of acceleration, problem of control with
excluded time and
problem of control as a function of time have been discussed and solved. The
simple expressions for relevant optimum phase trajectories and algorithms of
adaptive movement control have been obtained, which allow their effective
practical realization to be carried out.

Key Words: Terminal Control, Moving Object, Boundary Value Problem,
Adaptive Movement Control.

1. Introduction

Problems related to the control of moving mechanical objects belong to the
class of sufficiently well studied problems, many of which for a long time have
been regarded as classical ones (Bellman, 1957 and Lee, 1967). First of all, they
include such methods as the principle of maximum, dynamic programming, the
momentum method and others directly connected with the classical methods of
variation calculus. These methods are rather difficult for application, since the
eventual control algorithms obtained with their aid are actually of programming
character, i.e. explicitly depending on time. Therefore, it is impossible to carry
out the current correction of a phase trajectory, though such a correction is
absolutely necessary because a moving object is influenced by perturbing
environmental factors (both systematic and random).

Below, we will consider only one-dimensional problems of adaptive
control which, from the standpoint of application, are important to solve control
problems for mobile robots. Since a mobile machine (MM) has a specific
design, it makes sense to consider only movements along rectilinear segments.
Thus, a plane problem actually reduces to an one-dimensional problem with the
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two-dimensional phase space W.¥), where V' is MM movement along the

straight line, and ¥ is velocity.

2. Principal Part

2.1. General Problem.

Let us assume that the acceleration ¥ and the control force F are related as
follows:

lf/:k{"j (-l)

where F is the moment of force acting on the controlled wheels, and ks the
proportionality coefficient.

The control algorithm synthesis can be reduced to the following variational

problem: Given two points with coordinates o, ¥%) and W) in a two-
dimensional phase space, it is required to find equations for the curve which lies
in the phase plane and connects these points and on which the functional

% 4
T = f F(0)dt,

(A)

where 7' the object control time interval, takes a minimal value. The curve
defined in this manner is obviously optimal in the sense of minimum (A), i.e. in
the sense of control forces energy.

Acceleration along the optimal curve is a function of phase coordinates
W =y, y). 2)

Comparing (2) with (1), we obtain the equality

kE = o(y.y). 3)

The substitution of (1) into (A) gives
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Since functional (4) belongs to the type of functional containing second
order derivatives, the Euler equation takes the following form (Gelfand, 1961

and Hestenes, 1966).

T

o
@ 5)
The solution of this equation is written as the third order polynomial
2 3
\p:C,,+C}t+th—+C3t—.
| 276 (©)

The boundary conditions have the form
=0: VY =Vo. V=V, (7)
=T, V=V, V=5 (8)

These four conditions are sufficient for defining four constants C;
(1=0,1,2,3) contained in (6).

Thus the optimal trajectory is defined completely.
Let us first consider two particular problems.

2.2. Guidance Problem.

The guidance problem is defined by the following boundary conditions:

i Wy W, ©)
1. V=VYr. (10)
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Conditions (9) and (10) require that the states V=Vo.and ¥ = Y0 of the

4 =14 ; :
object must be reduced to the state Y =V7 under the assumption that the
guidance velocity is arbitrary. In terms of variation calculus, this is the problem
with moving ends.

For such problems, to the available conditions (recall that we have four
constants, while the boundary conditions are only three) we add the missing
transversal condition (Gelfand , 1961 and Hestenes, 1966) which ,in our case, is
written as

i(}{{, =0
dt ; (11)
where (G denotes the sub integrand in (4).

It is obvious that

“y
G, -

G, =0 (12)
and

Gy =207 (13)

Thus, equation (11) can be reduced to

2/=0 (14)

Using the triple differentiation of (6), initial conditions (9), (1) and
transversal condition (14), we define C; (1=0,1,2,3) as follows:

2(9’"0 _W_f) 2‘1‘”}' C =
—— =

C,=0,C, = =2
T? 1

W{] ; Cu =W,

(15)

Equality (15) enables us to write the following expressions for an optimal
trajectory in the phase space:

Wo—-vs) Ve, .
(,r/:(—T:——?)r +qyﬂt+a;/,)$
.2y, —vy) 2y .
l.-‘r/:( i Lo i f)'(+ray0
1 b (16)

Phase acceleration turns out to be the constant value
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L 2w -vy) 2,
W= — —
r r . (17)

For the reduction problem this is the law of control.

2.3. Acceleration Problem.

Let us replace the boundary condition (10) by

=T; ¥ ~=Yr (18)
From conditions (18) it obviously follows that the phase velocity of the
controlled object should be changed so that at the time moment / = 7'it become
equal to the given value (wr =¥ ) for any phase coordinate value.
This is again the problem with moving ends. The transversal equation (14)

remains the same. Analogously to the case considered in Subsection 2.2, we
obtain the following values for the constants C; (i=0,1,2,3):

. . Wy, . o
C;=0,C, = %;(*1 =0, Co =W,
1 , (19)
Hence
lf'r/ - lf—/” 3 g
W= (——2) +y t+y,
2r ; (20)
.=y,
b=+,
r ; (21)
Phase acceleration is again a constant value equal to
5 W;‘ - U./{_I
Y=t
1 (22)

Formula (22) is the law of control for the acceleration problem.
2.4. Control with Excluded Time.

Combining the two problems considered above, we can solve a general
problem of defining the control law for the movement of the phase point

(W, ;)

Wo.¥0) to the phase point with excluded time. From (22) we have
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Iz"::rJr' _':f‘fo
v (23)

Thi=

Forz =T the first equation from (16) can be rewritten as

w2

Y A
We= W?"' v, I+,

(24)
7 i
g=ao V) ¥,
where i I
The substitution of (23) into (24) gives
- [a"r/i i WIJE
2(‘#’/.;' - Wu) ) (25)
If in (25) we replace the initial values Yoand Yo by the current ones
g
Z(Wf 4 ) . (26)

then (25) gives solution of the posed problem on bringing the controlled object

from the state Wo¥0) to the state W) . The procedure is as follows: the
current position and velocity of the moving object are measured and both

values (¥ and V) are entered into the computing unit of the automatic control
system, where expression (26) is calculated and multiplied by the
proportionality coefficient £; in order to define the control force / (3). The

process stops at V=Vrand ¥V =Yr

Because of the operation of replacement, in (26), of the initial point

(w“’%)by the current point (“>¥) | functional (26) is calculated not on the
entire trajectory, but on its individual segments. Hence, a question arises
whether the trajectory defined in this manner is optimal, i.e. whether it
corresponds to the trajectory defined by minimum (A). The answer is provided
by the following statement which underlies the dynamic programming method:
The end of an optimal trajectory is always optimal (Bellman, 1957). The

operation of replacement, in (26), of the initial point Wo. %) by the current
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point (V,V) results in the minimization of the phase trajectory end, i.e. this
operation realizes implicitly the dynamic programming principle, which may
serve as a proof that the trajectory defined by (26) is optimal.

2.5. Control as a Function of T.

Let us return to the problem with four boundary conditions. After defining
the constants C; (i=0,1,2,3) by the initial conditions (7), (8), we obtain the
phase acceleration value

i 6(@"(“ - "1}/_;‘) 2(!;‘/0 + 2"1‘{/.;')
W= + :
- r : (27)

By virtue of the arguments given at the end of the preceding subsection, we
can rewrite (27) as
. Oy-v,) s 2y +2p,)

(T -t)? T—t

(28)

Formula (28) is the law of feedback control of putting, at a given time 7,
the controlled object to the reference trajectory.

The control law (28) can be called as “strict” control. A change of the
phase acceleration value in the course of control brings about a change of the
impact force (3), which results in the movement of the object. Moreover, a
change occurs in the object acceleration and, accordingly, in all uncontrolled
forces acting on the object. Control has to compensate (in the sense of energy)
for a change of uncontrolled forces, since otherwise the process might become
uncontrollable, for instance, if 7" has been chosen rather small.

The above reasoning explains the meaning of the term “strict”. As different
from this, the law of control with excluded time 7" can be called adaptive or
self-adapting. In this case the approach of the phase point to the terminal point
is of asymptotic character and therefore the controlling force always
compensates uncontrollable forces.
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