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Abstract

In the article, using spinor representation of orthogonal transformations, the
equations, for generalized rotations are received. The rotations are defined as
set of all possible rotations, both with zero, and non-zero centers which carry
out transformations of initial 3-dimensional point into a final. The expressions
between second order complex unitary transformations matrixes and real
orthogonal matrixes of rotations in L' are received, that allows easily
calculating of corresponding Euler’s angles.

Keywords: Spinors, Generalized Rotations, Hermitian Transformations,
Orthogonal Transformations.

Statement of the Problem

Methods of representation of three-dimensional rotations used in solving
various engineering problems are usually confined to the description of
individual concrete rotations centered at the origin (zero center). Among these
methods is in particular the well known method of orthogonal real matrices
whose elements are functions of Euler angles (Gelfand, Minlos and Shapiro,
1958), (Fu, Gonzales and Lee, 1987). At the same time it should be said that the
problem of describing so-called generalized rotations (Gelfand, Minlos and
Shapiro, 1958) evokes a much greater interest both from the theoretical
standpoint and from the standpoint of applications (in the first place we mean
an application in robotics and in particular in the planning of trajectories in the
case of obstacles). Under generalized rotations we mean the set of all possible
rotations with both zero and nonzero centers which transform the initial three-
dimensional point to the finite one. The basic problem arising in this context
can be formulated as follows: Given two three-dimensional points x(xl,xz,x3)
and y(y'y%y), it is required to define the set of all possible transformations
and centers of rotations which bring about the transformation of the point x to
the point y. It is obvious that this problem can be easily extended to the case
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where instead of two points we consider two finite sets of points {x, (x],x],x]}

and {y, (v}, ,»’} i=1,2,...m, which corresponds to the case of rotations of a
solid.

Equations for Generalized Rotations

3 5 5 . . .

Let L” be a linear Euclidean space with orthonormalized basis vectors ey, €2,
e5. To each vector x=x'e;+ x’ey+x’e; of the space L} we assign a traceless
Hermitian matrix

3 1 s 2
x ¥ —ik
X= ’

1 . 2 3
X +ix - X

whose elements are the so-called spinor components of the vector x (Kostrikin
and Manin, 1980). When we pass from the usual Euclidean components of the
vector x to the spinor ones, we thereby identify the vector x with Hermitian
functionals on the two-dimensional linear space C* over the field of complex
numbers C (Postnikov, 1982). Denote by ZL(C*) the set of all Hermitian
functionals on C* which is a linear three-dimensional space over the field of
real numbers provided that Pauli matrices are taken as basis elements. Then
for each matrix of form (1) we have the decomposition

1 2 3
X=x o1+ X6, +Xx 03,

where

are Pauli matrices.

From decomposition (2) it follows that the set L(C?) is a linear three-
dimensional space over the field of real numbers and thus it can be identified
with L. Note that to each basis vector of the two-dimensional space C* we can
assign the basis vectors o0y,05,05 of the space L(C?) (and also the
orthonormalized basis vector e1,e5,e3 due to the identification of * and L(Cz)):
each of the matrices o; is represented as some linear combination of tensor
products of basis vectors of the space (* (Kostrikin, Manin, 1980). The
foregoing reasoning implies that for any matrix C € C?, which is a matrix of
transformation between two basis vectors of the space (7, there also exists a
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transformation matrix of the corresponding orthonormalized basis vectors in the
3
space L.

Proposition_I. The matrix of transformation of the basis vectors in % is
unitary.
Proof. If on the space C* we consider Hermitian functionals of the form

0 3 1 . 2
X HE X =i
X =

5

1 T 3
x +ix~ x’—-x

then they will correspond to the four-dimensional vectors of a pseudo-
Euclidean space with signature (1,3) and with basis vectors

Now, transformations of the basis vectors of the two-dimensional space C
lead to transformations of the basis vectors (3), while the transformation
matrices remain the same as in the case of functionals of form (1). The
orthogonal complement Loy of the first basis vector op is an anti-Euclidean
space (because of the pseudo-Euclidean property of the space defined by
vectors (3)) and, after changing the signs of the scalar products, a three-
dimensional Euclidean space that coincides with L(C?). The restriction of the
action of matrices of basis vector transformation in C? to the subspace Loy
means that these matrices satisfy the condition C'o,C=0o,, ie. C ' =C",

QED.

The problem posed in Subsection 1 can be now reformulated in terms of the
spinor space C*: Given two traceless matrices of Hermitian functionals

3 1 s 2 3 1 L
X x —ix — v
X=|, , |andu Y = ly . 4 ?,
X +ix” e Vv +iy° -y
it is required to define:
a —-p

1) aset of unitary matrices :‘ which satisty the equality

o

F=C X

2) one-dimensional subspaces which are invariant with respect to
transformations represented by matrices (C (i.e. a set of respective
rotation centers).
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Note that since the transformation C is unitary, the vector norms defined by
the determinants of matrices of the Hermitian functionals X and Y coincide and
therefore (4) defines rotation. From equality (4) we can obtain the following
system of linear homogeneous equations with respect to the unknown variables
a and S

x3a+}’ﬁ=.}’3a—é?
yo—-x,f=y,f+0a

where ¥y =x, +ix, and 6 =y, +iy,.
For arbitrary «, a solution of (5) is given by

_ja-da
X, +y;

From (6) we have

Ref=p = 4% —y;) :i:(x: * ) and
3 3
a,(x, +y) -, (x, - y,)
I = [ = ST 1\ —Va)
TS X, + ),

Using the unitarity of the matrix C (& +a; + f7 + f; =1), we can define
either o, =Rea or «, =Ima. Note that one of these parameters remains
arbitrary. Thus (6) defines rotation for « #0 and x, +y, #0.

The invariance of the rotation center z(zj, za, z3) with respect to the
transformation C is written as a condition

CHe =,
whence we obtain

2o+ uf =z, - aff

fa—-z,f=z,f+0a’

where y=z +iz,.
The latter formula leads to the system
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It is not difficult to verify that the determinant of this system considered for
the unknown values zi, z; and z3 is identically zero and therefore for given ¢,
o, Prand B (¢ #0 and x, +y, # 0) there always exist nontrivial solutions

written in the form
B, . A

Zoms—Sgn By 2

3

where z3is arbitrary.

Equations (7) define the one-parametric set of transformations (' due to
which (x', x*, x’) changes to (3", y, y*) by means of rotation. If we choose & as
a parameter, then to its each fixed value defining the unique transformation

C\_, we can assign the set of rotation centers
&, 22 — (8 +0,)z, =0
whose equation is readily obtained from (8).

Thus, (7) together with the normalization condition define a generalized
rotation transforming (x',x*,x%) to (y',y’,y’) with respect to the set of centers
which is defined by (9).

Relations Between Transformations in C* and L}

We can establish the correspondence between the elements of the

transformation matrix :“i “Ain (*? and the elements of the orthogonal real

o

matrix of rotation A in L*.

The matrix A is, by definition, the matrix of transformation between two
orthonormalized basis vectors of the space L’ and its rows are decompositions
of the new basis vectors in terms of the initial basis vectors. Hence due to the
identification of the spaces L(C?) and L’ we have

CloC=da; =123,

where o, are the Pauli matrices corresponding to the initial basis, o, are the

Pauli matrices of the new basis, and ¢ are the elements of the matrix 4™
Formula (10) can be written explicitly in the form of three matrix equalities
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01 0 =i 1 0 l&@ —p,0 N, |a B

a, +a, +a, = | o |
1 0 i 0 0O -1 | a| |l O - «
L0001 0 —if 1 o la - 0 i |«

& + +a; =2 ﬁ*_ L E
1 of “|li O o -1 | «a|li O |- «@

ai,,o l+a§’9 —i j,l OZCE -Bl.[1 Of, @ E
1 0 i 0 0O -1 | al|l |0 -1 -8 «

which readily yield the following expressions for calculating the elements of
the matrix 4 by the elements of the matrix C:

a;:(alz_azz)_(ﬂlz_ﬁ;); a;:2(a,a2+ﬁ]ﬂ2);
a; =2, B, -, B )

af=2(ﬂ1ﬁ2_alaz); a§=(a]2_a§)+(ﬁlz_ﬂ22);
032 =2, B, ta,B,);  (11)

013 =2, B +a,p,); a; =2a, B —a,3,);

a; =(a] +a3)— (B + 7).

Expressions (11) enable us to calculate the elements of the matrix 4 through
the given coordinates of three points (initial, terminal and the center) which

define rotation.
On the other hand, taking into account that the matrix 4 can be written in the

form (Gelfand, .M., Minlos, R.A. and Shapiro, Z.1., 1958)

cos@cosly —cos@sin@sinly  —cos@siny —cosfsing@siny  sin@siné
A=|sinpcosy +cos@cos@siny  —sin@siny +cosdcos@cosly —cos@sing
sinysin @ cosy sing cosé

, (12)

where —n<p<m, 0<6< m u —n<y<n are Euler angles, it easily follows that
expressions (11) enable us to define Euler angles as well.

A Numerical Example
Given two arbitrary vectors of equal length x(100, —30, 10) and (-12, 2,
104.73) and with zero center of rotation, we calculate, by (7), p= -6.867+4.765i

for arbitrary o= -5+8i. Hence, after  normalization, we obtain the
transformation matrix

215



IBSU International Refereed Multi-diciplinary Scientific Journal Ne 1, 2006

c-l 0.397+0.635f —0.545+0.378i
1 0.545+0378 —0.397-0.635i

Representing the vectors x and y by the spinor matrices

10 100 + 30/
100—-30i -10

104.173 -12-2i
-12+2i -104.173

= an o

3

we verify the validity of equality (4):

10 100 +30i
100 —301 10

-0.397-0.653i 0.545-0.378i

-0.545-0.378i —0.397+0.653i

—0.397+0.653i —0.545+0.378i
0.545+0.378i —0.397-0.653i

) ‘

' ‘

2

(104173 —-12-2i
-12+2i -104.173

which means that the transformation matrix C' defined in this manner actually
represents the sought for rotation. Using formulas (11), we calculate the matrix

-0.399 -0916 0.048
A=0092 —-0092 —-0.992.
0912 -0392 0.121

It is not difficult to verify that the determinant of the matrix 4 is equal to
unit and that 4" = 4", i.e. 4 is indeed an orthogonal matrix. Further, we verify
A*¥x =y:

-0399 -0916 0048 | (100 —12
0.092 -0.092 -0.9921*|-30|=| 2
0912 -0392 0.121 10 | |104.73

Thus the matrix 4 represents the same rotation in the space L’ as the
complex matrix Cin C%

Now let us take a nonzero center of rotation lying in plane (9). Assuming
that the coordinate z3 has an arbitrary value z3 = 10, we calculate, by formulas
(11), the other two coordinates z; = —8.583 and z; = 5.956. We immediately see
that
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-0.399 -0916 0.048 5.956 5.956
0.092 -0.092 -0.992{*—8.583|=|-8.583|,
0912 -0.392 0.121 10 10

i.e. the vector z is the eigenvector corresponding to eigenvalue 1.

It is likewise easy to establish that the matrix 4 is the matrix of rotation of
the initial points x to the point y with respect to the new center shifted by the
vector z with respect to the zero center. To this end, we calculate the vectors x —
z=(94.044, -21.417,0) and y — z = (—17.956, 10.583,94.173) and the product

-0399 -0916 0.048 | [94.044 |-17.956
0.092 -0.092 -0.992/*21.417|=|10.583 |.
0912 =0392 Q121 0 94.173

Moreover, it is obvious that knowing the numerical values of the elements
of the matrix 4 and taking into account (12), we can easily calculate the
corresponding Euler angles, which can be used in future developments of
effective methods for optimal control of moving components of various robots.

Conclusion

Equations for generalized rotations are obtained by means of Pauli matrices.
Rotations are defined as the set of all possible rotations with both zero and
nonzero centers that transform the initial three-dimensional point to the terminal
point. Relations between second order complex unitary transformation matrices
written in Pauli basis and real orthogonal matrices are established, which enable
us to easily calculate the corresponding Euler angles.
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