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A Variational Approach in Drivelines Terminal
Control

Cumhur AKSU

Abstract

It is shown that on the base of Driveline acceleration measurement it is possible to define a

variational problem, solution of which permits to synthesize general Control function of
Drivelines control process. The last function covers various particular control problems.

1t is shown, that these problems can be naturally defined by choosing of corresponding
boundary conditions. As an example of such particular cases a problem of Acceleration is

solved.
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Introduction

Problems connected to the elaboration of methods and algorithms
for Control of Drivelines belong to the class of one of the most difficult
mathematical and engineering problems and at the same time they are
widely investigated problems due their practical importance
(Mchedlishvili, 2008, Petrov, 1971). Despite of it, majority of existing
approaches of solution of the mentioned problems can be characterized
as complicate, from their mathematical foundations, and that is why
difficult to realize. In the first place, they include such methods as the
principle of maximum, dynamic programming, the momentum method
and others directly connected with the classical methods of variational
calculus. These methods are rather difficult for application, since the
eventual control algorithms obtained with their aid are actually of
programming character, i.e. explicitly depending on time. Therefore it is
impossible to carry out the current correction of a phase trajectory,
though such a correction is absolutely necessary because a moving
object is influenced by perturbing environmental factors (both
systematic and random).

Definition of the problem

Below we will consider only one-dimensional problems of
adaptive control of Drivelines. In the Fig.l the simplest principal
scheme of such a Driveline is shown. The load of the motor is reduced to
simplify discussion of general principles and approaches given below.
Later, having in view application problems of certain drivelines units,
we shall analyze structured (not reduced) loads.

O

Figure 1. Principle scheme of Driveline

1-motor; 2-reduced load with moment of inertia J; ¢ -rotation angle; t-
torque; Vi,-input voltage
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Motion of the system shown in Fig.1 is described by the following
system of differential equations

n 3

o=1 ZM1+2mi1 (1)

‘] i=1 j=l J
a=q,

where @ is the angular rate of the controlled object under consideration;

M; (i=1, 2, ..., n) are the uncontrolled Torques; m;(f = 1, 2, ..., k) are the

controlled Torques.

Uncontrolled Torques may include, for example, all perturbations
generated by the environment in which the motion takes place.

The terminal state control problem is formulated as follows:
Given the initial phase state of the object (¢,;¢,), it is required to

transfer it (within time T) to the terminal state (¢ .. ¢ ). Below we

discuss the solution of the formulated problem.

Synthesis of the General Control Function for Terminal Problems

Uncontrolled forces are functions of time #, the coordinate ¢(angle)
and velocity ¢ (angular rate): M =A{ (f,¢.¢), while controlled forces,

in addition to being all these functions, are also functions of the
controlling parameter & 1: m, =m, (t,¢,¢,0). Note that the parameter

o 1s frequently the position of the controlling element and may be a
function of time. The traditional approach to the solution of the above-
stated motion control problems consists in  finding the
functionsm, =m (f,¢,¢,a) for which solutions of system (1) satisfy,

on the time interval [0; 7], the corresponding boundary conditions. As
has been said, the uniqueness of a solution is obtained by using an
additional condition that solutions must supply an extremum to some
specially chosen functional. Such an additional condition is frequently
the requirement for a control time minimum (quick action maximum) or
an energy minimum of controlling forces. There are also other kinds of

! For example, in the case of jet engines the throttle quadrant may play the role of a
controlling parameter.
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functionals. Solutions obtained in this manner are of program character
(the control system is open), which leads to the instability of the realized
motion because of the unforeseen influence of uncontrolled forces. The
development of an adaptive method demands a different approach: it is
necessary to keep a continuous control over the current state of the
controlled object and these demands to take respective measurements.

Let us discuss this issue in more detail. Let an optimal function

(t) of controlling forces be defined in some manner. Then it is obvious

that the controlling parameter function & (¢) can be defined as a solution

of some differential equation, the right-hand side of which depends on a

difference between the given optimal function (t) of controlling forces

and the current measured value of the resultant of these forces
m=m(t,¢, ¢, (1)) . Assume that this differential equation has the form

)=k () —m(t.p.¢.c) *. (2)

Assume that a relation between the controlling parameter a(#) and
the value of the current (measured) force m=m(t,.¢,¢,0(t)) can be
written in the form of an inertia element of first order

m=(k,a(t)- m). 3)

The device described by equation (3) is a regulator, i.¢. a power
unit generating the controlling force m =m(t, ¢, ¢, a(i)).

The control process is therefore described by means of the system
of differential equations (1) (3). Knowing the synthesized function of
controlling forces (t), we can transfer the object from the initial state
¢(1,).¢(t,) to the terminal state ¢(¢.),¢(t.). However here we

encounter a difficulty caused by the necessity to measure controlling
forces. This, obviously, can be done if these forces are separated from
controlled forces during the object motion. From the practical
standpoint, the latter is an unsolvable problem and this circumstance
impedes the development of adaptive methods which could be
applicable to problems of terminal state control.

* This control law gives astatism of third order with respect to external perturbing
forces.
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The problem we consider here can be solved by taking a different
approach (Batenko, 1977, Erguven, 2004).

A change of controlling forces brings about a change of
uncontrolled forces too. All forces (uncontrolled +controlled) acting on
the controlled object generate the object motion acceleration ¢ . It is
obvious that ¢ can be easily measured directly and therefore we should
pose the problem on the synthesis of a controlling function in the form
of acceleration ¢(¢). Then the control process reduces to the fulfillment

of the equality

a=¢@), 4
where ¢ is the measured acceleration of the object and ¢(7) 1s the
desired (synthesized) acceleration of the object.

Note that (4) is actually the equation of motion of the controlled
object under the action of the controlling function ¢(¢) and is equivalent

to (1). This 1s explained by the fact that the measured acceleration of the
object ¢ takes into account changes of both uncontrolled and controlled
forces. We will make an essential use of this fact in the sequel. It is not
difficult to realize equality (4) physically if the regulator (power unit)
described by the equation of an inertia element (3) is sufficiently
powerful. In that case it becomes possible to compensate uncontrolled
forces by controlled ones and to fulfill equality (4).

Let us assume that the relation between the given acceleration
¢ (1) and controlling forces m=m(t, ¢, ¢,a(t)) is

¢ =km(t,¢.¢.0(1) ()
where K is the proportionality coefficient.

The synthesis of a control algorithm can be reduced to some
variational problem in a phase space: Given two points (¢, ;¢,) and

(¢ ;¢ ) in a two-dimensional phase space, it is required to derive the
equation of a curve of this phase space that connects (¢, ;¢,) and

(¢ ;3¢ ) and delivers a minimum to the next functional
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J, = %jmz(t, 0, ¢, c(t))dk . (6)

The equation of the curve we want to define can be written
parametrically as ¢=¢(7) and@=¢(r). Then it is obvious that to the
phase curve defined in this manner there corresponds the motion
trajectory from the point ¢, to the point ¢,. The initial velocity at the

initial moment of time ¢ =1, 1s equal to ¢, and at the terminal moment

of time =T -- to ¢,.

From (6) it follows that the trajectory @ =@(f) and ¢ =¢(¢) delivering a
minimum to (6) is optimal in the sense that it minimizes energetic
controlling actions.

The acceleration along the optimal trajectory is the function of
phase coordinates

¢ =" (¢, ¢). (N
From (5) and (6) we have
fem(t,¢.¢.a(1) ="t (¢, ¢). (&)
Substituting (8) into (6) we obtain
17 17
— a2 — - el
J= !kl [¥(p. ) dt =— ![klco] d. ©)
1
where k&, =—.
k

Functional (9) belongs to the type of functionals containing
derivatives of second order and therefore its corresponding Euler
equation can be written in the form(Gelfand, 1961)

d*p
=0. 10
dt’ (10)

Solution (11) is a third order polynomial
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2 f3

¢=CO+C1t+C2%+C = (11)

3

Function (11) is result of synthesis of the most general Control
function of Drivelines control process, which covers various particular
control problems. These problems can be naturally defined by choosing
of corresponding boundary conditions, which depict peculiarities of the
each of the particular control problem.

In general the boundary conditions are:
1=0, 9= ¢=, 3 (12)
t=T, P=@; gbngf. (13)

These four conditions are sufficient for defining four constants C;
(i =0, 1, 2, 3) contained in (11), which completely defines an optimal
trajectory.

As it was mentioned above by using initial conditions (12) and
(13) it is possible to solve different terminal problems: reduction,
acceleration breaking etc. We illustrate the terminal control approach
with the example of only acceleration problem. One of the most
important reasons of it is that the problem is very important for control
especially of Drivelines (Geartrains).

The Approach Problem with an Additional Condition Imposed on
the Terminal Accelerations

Frequently, it is not enough to have four boundary conditions (12)
and (13) of the approach problem to solve applied problems of terminal
control. For example, in the case deceleration it is not enough to assume
that the terminal velocity is equal to zero: for a complete stop it is
necessary that the terminal acceleration, too, be equal to zero. Thus there
arise an additional boundary condition (the fifth one) related to
acceleration:

=0, p=0,;. ¢=¢,;
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=T, =@y @ngf;(b:@f- (14)

It is clear that in this case the controlling function should be taken
in the form of a polynomial of fourth order containing five coefficients,
of which only three are to be defined, since it is obvious that the first two
coefficients satisfy the first two (initial) conditions (14)

PO = +Pi+Ct+Cr+C +C'. (15)

Calculating the first and second derivatives and substituting them
into (14), we obtain the values of the coefficients C;(i=2, 3, 4)

12 6 . "
C, ZT_Q((Df _%)_E(@f +¢0)+¢f;

48 18 . . 6
G =F(¢f _¢0)+T_2(¢f +¢0)_E¢f;

36 12 , 6
o =T—4(¢f—%)—F(¢f+%)+T—zcof- (16)

From (15) and (16) it follows that the controlling acceleration
function has the form

" 12 6 . . . 48 18 . . 6 .
@(r)zT_g(gpf_¢0)_?(¢f+¢0)+¢f+(F(¢f_¢0)+F(¢f+¢0)_5¢f)t+

36 1z . 6 .
+(F(¢f — & ) _F(gof + @ ) +F¢f )fz-
(17)
To pass to the control with feedback we proceed as in the
preceding cases, i1.e. we assume that in (17)t=0, T =T —t, and replace

the initial values of the phase coordinates by the respective current ones.
As aresult, we obtain.

12 6
O = e (9, = )~ (B 9 (18)

(18) is again the law of control with a singularity and to eliminate
this singularity we proceed as follows. We assume that T —t= T =
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const and the terminal values of the phase trajectories are equal to the
variable phase trajectories of the mobile target point

@m(f): @ +Q.910(f+AT)+

2 3 4
c, (t+AT) ‘c (t+AT) ‘. (+ATY
2 6 24

2 3
9, ()= @ +C, (t+AT) +C, (”?T) Lo, GxATY

(20)

where C,, C3 and C, are defined from (14).

Substituting functions (20) into (18) and performing simple but
rather lengthy transformations, we obtain the differential equation of the
approach problem which does not contain singularities

4
¢0+KW+K¢¢=2K;‘, (21)

=0

where

O ATE AT Y

K = 12@3 +£+C3;
AT* AT
6C, 3C
K,=—2+—"2+C,
AT AT
K, = 2C32 N 2C, :
AT* AT
C4 .
1TATY
— 12 ]
9 ATZ ?
_6
“ AT
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Let us define the transitional and stationary components of
equation (21). A particular solution of the non-homogeneous equation
will be sought in the form

4
p=> at (22)
i=0

where a; are the coefficients we want to define.

Differentiating (22) twice, substituting into (21) and equating the
coefficients at equal powers t, we obtain a system of equations with
respect to the desired coefficients a; (1= 10,...,4)

K, =20, +K 0, +K a,;
K, =6a,+2a,K ,+aK ;

K,=12q,+3a,K  +a,K ; (23)
K,=4a,K , +a,K .
K,=akK,.

from which they are defined quite casily:

K4
a, =—,;
K(ﬂ
a, = K3 —;Kwa4
@
o = K, +3K£ia3 -12aq, : (23)
@
o = K, —ZK;a2 —0a, :
@
Kl _Ka)al —2&’2
a, = .
K

[

Expressions (23) define the stationary component of the approach
process with the given terminal (zero) acceleration value,
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The transitional component (a general solution of the non-
homogeneous equation (21)) is likewise easy to write:

Kyt

()= * (ccos(ft)+c,sin( Br)). (24)

where

f K
B=K, —(T“’) . €1, ¢z are the constants we want to define.

A complete solution of the differential equation (21) can now be
written as a sum of the transitional and the stationary process

K
P)=0,()+ 0, (0=¢ * (eos(Bresimp)+Yar. (29
i=0
To define the constants s; and s, we use the initial conditions (14)
and derivative of (25). which gives the following expressions for the
sought constants

Co=@y—a: C,=(P, - F)E (26)
and eventually the final expression for a complete solution of (21).

o(t) = ¢ (9o —ay Jcos(BO) +(@, —aK,, “"“’ B0 =90 i ) + Eat
(27)

The transitional process (24) gets damped with time (the time
K

2]

constant is equal to 2 ), i.e. the object moves to the forced trajectory
(22).

The velocity of the controlled object is equal to
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K&)

Pt)=e? (—K—((Dlo a,)eos(pt)+(w, —a K, ((010

)sm( B+

+[(¢10 —4 )Bsin( pr) +(a,—ak, (@10 )/BCOS(/-%))

+a, +2a,t +3at’ +4a,r’
(28)

Substituting the value t = T into the stationary solution of equation
(21) and into its derivative, it is not difficult to see that they indeed
satisfy the boundary conditions (14) provided that the terminal
acceleration 1s equal to zero, which solves the posed problem on the
terminal state control in the approach problem.

Conclusion

General Principles of Drivelines Terminal Control are suggested.
The terminal state control problem applied to Drivelines Control is
defined. It is shown that on the base of Driveline acceleration
measurement it is possible to synthesize general Control function of
Drivelines control process. The last function covers various particular
control problems. It is shown, that these problems can be naturally
defined by choosing of corresponding boundary conditions. As an
example of such particular cases an Approach problem with an
Additional Condition Imposed on the Terminal Accelerations is solved.
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